a
    bg                     @   sj   d dl mZmZmZ d dlmZ d dlmZ d dlm	Z	 eeeeee
  dddZG dd	 d	e	eZd
S )    )AnyCallableList)
Embeddings)
ConfigDict)SelfHostedPipeline)pipelineargskwargsreturnc                 O   s   | |i |S )zInference function to send to the remote hardware.

    Accepts a sentence_transformer model_id and
    returns a list of embeddings for each document in the batch.
     )r   r	   r
   r   r   x/var/www/html/cobodadashboardai.evdpl.com/venv/lib/python3.9/site-packages/langchain_community/embeddings/self_hosted.py_embed_documents	   s    r   c                   @   sd   e Zd ZU dZeZeed< dZe	ed< e
ddZee eee  ddd	Zeee d
ddZdS )SelfHostedEmbeddingsa  Custom embedding models on self-hosted remote hardware.

    Supported hardware includes auto-launched instances on AWS, GCP, Azure,
    and Lambda, as well as servers specified
    by IP address and SSH credentials (such as on-prem, or another
    cloud like Paperspace, Coreweave, etc.).

    To use, you should have the ``runhouse`` python package installed.

    Example using a model load function:
        .. code-block:: python

            from langchain_community.embeddings import SelfHostedEmbeddings
            from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
            import runhouse as rh

            gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
            def get_pipeline():
                model_id = "facebook/bart-large"
                tokenizer = AutoTokenizer.from_pretrained(model_id)
                model = AutoModelForCausalLM.from_pretrained(model_id)
                return pipeline("feature-extraction", model=model, tokenizer=tokenizer)
            embeddings = SelfHostedEmbeddings(
                model_load_fn=get_pipeline,
                hardware=gpu
                model_reqs=["./", "torch", "transformers"],
            )
    Example passing in a pipeline path:
        .. code-block:: python

            from langchain_community.embeddings import SelfHostedHFEmbeddings
            import runhouse as rh
            from transformers import pipeline

            gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
            pipeline = pipeline(model="bert-base-uncased", task="feature-extraction")
            rh.blob(pickle.dumps(pipeline),
                path="models/pipeline.pkl").save().to(gpu, path="models")
            embeddings = SelfHostedHFEmbeddings.from_pipeline(
                pipeline="models/pipeline.pkl",
                hardware=gpu,
                model_reqs=["./", "torch", "transformers"],
            )
    inference_fnNinference_kwargsZforbid)extra)textsr   c                 C   s6   t tdd |}| | j|}t|t s2| S |S )zCompute doc embeddings using a HuggingFace transformer model.

        Args:
            texts: The list of texts to embed.s

        Returns:
            List of embeddings, one for each text.
        c                 S   s   |  ddS )N
 )replace)xr   r   r   <lambda>R       z6SelfHostedEmbeddings.embed_documents.<locals>.<lambda>)listmapclientpipeline_ref
isinstancetolist)selfr   
embeddingsr   r   r   embed_documentsI   s
    	
z$SelfHostedEmbeddings.embed_documents)textr   c                 C   s0   | dd}| | j|}t|ts,| S |S )zCompute query embeddings using a HuggingFace transformer model.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        r   r   )r   r   r   r   r   r   )r    r#   r!   r   r   r   embed_queryX   s
    	
z SelfHostedEmbeddings.embed_query)__name__
__module____qualname____doc__r   r   r   __annotations__r   r   r   Zmodel_configr   strfloatr"   r$   r   r   r   r   r      s   
-r   N)typingr   r   r   Zlangchain_core.embeddingsr   Zpydanticr   Z$langchain_community.llms.self_hostedr   r+   r   r   r   r   r   r   <module>   s
   	