a
    ag;,                     @  s   d Z ddlmZ ddlZddlZddlZddlmZmZm	Z	m
Z
 ddlmZ ddlmZmZ ddlmZ ddlmZ dd	lmZmZ dd
lmZ ddlmZ ddlmZ eddddG dd deZdS )zCChain that interprets a prompt and executes python code to do math.    )annotationsN)AnyDictListOptional)
deprecated)AsyncCallbackManagerForChainRunCallbackManagerForChainRun)BaseLanguageModel)BasePromptTemplate)
ConfigDictmodel_validator)ChainLLMChain)PROMPTz0.2.13zThis class is deprecated and will be removed in langchain 1.0. See API reference for replacement: https://api.python.langchain.com/en/latest/chains/langchain.chains.llm_math.base.LLMMathChain.htmlz1.0)ZsincemessageZremovalc                   @  s"  e Zd ZU dZded< dZded< eZded< d	Zd
ed< dZ	d
ed< e
dddZeddedddddZeddddZeddddZd
d
ddd Zd
d!d"d#d$d%Zd
d&d"d#d'd(Zd6d"d)d"d*d+d,Zd7d"d-d"d*d.d/Zed
dd0d1Zeefd2ddd d3d4d5ZdS )8LLMMathChaina  Chain that interprets a prompt and executes python code to do math.

    Note: this class is deprecated. See below for a replacement implementation
        using LangGraph. The benefits of this implementation are:

        - Uses LLM tool calling features;
        - Support for both token-by-token and step-by-step streaming;
        - Support for checkpointing and memory of chat history;
        - Easier to modify or extend (e.g., with additional tools, structured responses, etc.)

        Install LangGraph with:

        .. code-block:: bash

            pip install -U langgraph

        .. code-block:: python

            import math
            from typing import Annotated, Sequence

            from langchain_core.messages import BaseMessage
            from langchain_core.runnables import RunnableConfig
            from langchain_core.tools import tool
            from langchain_openai import ChatOpenAI
            from langgraph.graph import END, StateGraph
            from langgraph.graph.message import add_messages
            from langgraph.prebuilt.tool_node import ToolNode
            import numexpr
            from typing_extensions import TypedDict

            @tool
            def calculator(expression: str) -> str:
                """Calculate expression using Python's numexpr library.

                Expression should be a single line mathematical expression
                that solves the problem.

                Examples:
                    "37593 * 67" for "37593 times 67"
                    "37593**(1/5)" for "37593^(1/5)"
                """
                local_dict = {"pi": math.pi, "e": math.e}
                return str(
                    numexpr.evaluate(
                        expression.strip(),
                        global_dict={},  # restrict access to globals
                        local_dict=local_dict,  # add common mathematical functions
                    )
                )

            llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
            tools = [calculator]
            llm_with_tools = llm.bind_tools(tools, tool_choice="any")

            class ChainState(TypedDict):
                """LangGraph state."""

                messages: Annotated[Sequence[BaseMessage], add_messages]

            async def acall_chain(state: ChainState, config: RunnableConfig):
                last_message = state["messages"][-1]
                response = await llm_with_tools.ainvoke(state["messages"], config)
                return {"messages": [response]}

            async def acall_model(state: ChainState, config: RunnableConfig):
                response = await llm.ainvoke(state["messages"], config)
                return {"messages": [response]}

            graph_builder = StateGraph(ChainState)
            graph_builder.add_node("call_tool", acall_chain)
            graph_builder.add_node("execute_tool", ToolNode(tools))
            graph_builder.add_node("call_model", acall_model)
            graph_builder.set_entry_point("call_tool")
            graph_builder.add_edge("call_tool", "execute_tool")
            graph_builder.add_edge("execute_tool", "call_model")
            graph_builder.add_edge("call_model", END)
            chain = graph_builder.compile()

        .. code-block:: python

            example_query = "What is 551368 divided by 82"

            events = chain.astream(
                {"messages": [("user", example_query)]},
                stream_mode="values",
            )
            async for event in events:
                event["messages"][-1].pretty_print()

        .. code-block:: none

            ================================ Human Message =================================

            What is 551368 divided by 82
            ================================== Ai Message ==================================
            Tool Calls:
            calculator (call_MEiGXuJjJ7wGU4aOT86QuGJS)
            Call ID: call_MEiGXuJjJ7wGU4aOT86QuGJS
            Args:
                expression: 551368 / 82
            ================================= Tool Message =================================
            Name: calculator

            6724.0
            ================================== Ai Message ==================================

            551368 divided by 82 equals 6724.

    Example:
        .. code-block:: python

            from langchain.chains import LLMMathChain
            from langchain_community.llms import OpenAI
            llm_math = LLMMathChain.from_llm(OpenAI())
    r   	llm_chainNzOptional[BaseLanguageModel]llmr   promptquestionstr	input_keyanswer
output_keyTZforbid)Zarbitrary_types_allowedextrabefore)moder   r   )valuesreturnc                 C  sr   zdd l }W n ty&   tdY n0 d|v rntd d|vrn|d d urn|dt}t|d |d|d< |S )Nr   zXLLMMathChain requires the numexpr package. Please install it with `pip install numexpr`.r   zDirectly instantiating an LLMMathChain with an llm is deprecated. Please instantiate with llm_chain argument or using the from_llm class method.r   r   r   r   )numexprImportErrorwarningswarngetr   r   )clsr   r"   r    r(   l/var/www/html/cobodadashboardai.evdpl.com/venv/lib/python3.9/site-packages/langchain/chains/llm_math/base.pyraise_deprecation   s    
zLLMMathChain.raise_deprecationz	List[str])r    c                 C  s   | j gS )z2Expect input key.

        :meta private:
        )r   selfr(   r(   r)   
input_keys   s    zLLMMathChain.input_keysc                 C  s   | j gS )z3Expect output key.

        :meta private:
        )r   r+   r(   r(   r)   output_keys   s    zLLMMathChain.output_keys)
expressionr    c              
   C  s|   dd l }z*tjtjd}t|j| i |d}W n: tyl } z"td| d| dW Y d }~n
d }~0 0 t	
dd|S )	Nr   )pie)Zglobal_dict
local_dictzLLMMathChain._evaluate("z") raised error: z4. Please try again with a valid numerical expressionz^\[|\]$ )r"   mathr0   r1   r   evaluatestrip	Exception
ValueErrorresub)r,   r/   r"   r2   outputr1   r(   r(   r)   _evaluate_expression   s    z!LLMMathChain._evaluate_expressionr	   zDict[str, str])
llm_outputrun_managerr    c                 C  s   |j |d| jd | }td|tj}|rn|d}| |}|j d| jd |j |d| jd d| }n:|d	r~|}n*d	|v rd|	d	d
  }nt
d| | j|iS Ngreen)colorverbosez^```text(.*?)```   z	
Answer: )rB   yellowzAnswer: zAnswer:zunknown format from LLM: on_textrB   r6   r9   searchDOTALLgroupr<   
startswithsplitr8   r   r,   r=   r>   Z
text_matchr/   r;   r   r(   r(   r)   _process_llm_result   s    



z LLMMathChain._process_llm_resultr   c                   s   |j |d| jdI d H  | }td|tj}|r|d}| |}|j d| jdI d H  |j |d| jdI d H  d| }n:|d	r|}n*d	|v rd|	d	d
  }nt
d| | j|iS r?   rF   rM   r(   r(   r)   _aprocess_llm_result   s    



z!LLMMathChain._aprocess_llm_resultz$Optional[CallbackManagerForChainRun])inputsr>   r    c                 C  sF   |p
t  }||| j  | jj|| j dg| d}| ||S Nz	```output)r   stop	callbacks)r	   get_noop_managerrG   r   r   Zpredict	get_childrN   r,   rP   r>   Z_run_managerr=   r(   r(   r)   _call  s    zLLMMathChain._callz)Optional[AsyncCallbackManagerForChainRun]c                   sX   |p
t  }||| j I d H  | jj|| j dg| dI d H }| ||I d H S rQ   )r   rT   rG   r   r   ZapredictrU   rO   rV   r(   r(   r)   _acall  s    zLLMMathChain._acallc                 C  s   dS )NZllm_math_chainr(   r+   r(   r(   r)   _chain_type$  s    zLLMMathChain._chain_typer
   )r   r   kwargsr    c                 K  s   t ||d}| f d|i|S )Nr!   r   r   )r'   r   r   rZ   r   r(   r(   r)   from_llm(  s    zLLMMathChain.from_llm)N)N)__name__
__module____qualname____doc____annotations__r   r   r   r   r   r   Zmodel_configr   classmethodr*   propertyr-   r.   r<   rN   rO   rW   rX   rY   r[   r(   r(   r(   r)   r      s:   

u  r   )r_   
__future__r   r4   r9   r$   typingr   r   r   r   Zlangchain_core._apir   Zlangchain_core.callbacksr   r	   Zlangchain_core.language_modelsr
   Zlangchain_core.promptsr   Zpydanticr   r   Zlangchain.chains.baser   Zlangchain.chains.llmr   Z langchain.chains.llm_math.promptr   r   r(   r(   r(   r)   <module>   s&   	